CptS 475/575: Data Science
About me

• Name: Assefaw Gebremedhin
• Office: EME B43
• Webpage: www.eecs.wsu.edu/~assefaw
• Joined WSU: Fall 2014
• Research interests: algorithmic data science, network science, high performance computing, bioinformatics
• Lab: Scalable Algorithms for Data Science Laboratory (https://scads.eecs.wsu.edu)
• NSF CAREER project: Fast and Scalable Combinatorial Algorithms for Data Analytics www.eecs.wsu.edu/~assefaw/fascada
• Teaching at WSU:
 • CptS 483: Intro to Data Science (Fall 2015, 2016, 2017)
 • CptS 475/575: Data Science (Fall 2018)
 • CptS/STAT 424: Data Analytics Capstone (Spring 2019)
• CptS 475/575 Fall 2019:
 • Lectures: MWF, 9:10--10, GTZN 21
 • Office Hours: Wed. 10:30am--12pm (or by appointment)
 • Teaching Assistant: Helen Catanese
 • Email: helen.catanese@wsu.edu
 • Office: Dana 115 (office hours: Wed. 2--4pm)
About Data Science Class of 2019
(What I know so far)

- CptS 475: 25 enrolled
- CptS 575: 45 enrolled, 5 waiting list (50 total)

- CptS 475:
 - Almost all BS in CS

- CptS 575 breakdown:
 - 25 MS
 - Computer Science (more than 20)
 - Electrical Engineering
 - Environmental Engineering
 - 25 PhD
 - Computer Science
 - Electrical and Computer Engineering
 - Material Science and Engineering
 - Engineering Science
 - Civil Engineering
 - Environmental Engineering
 - Economics
 - Crop Science
 - Math
 - Individual Interdisciplinary (IID)
Course websites

• Public course site: https://scads.eecs.wsu.edu/index.php/data-science-f19/
 • Syllabus
 • Overview of schedule (updated after every lecture)
 • Resources

• OSBLE+: https://plus.osble.org
 • Lecture material
 • Assignments
 • Announcements and posts
 • Submissions and feedback

• Currently:
 • 37 added users (no further action)
 • 3 whitelisted (be sure to respond to invitation ASAP)
 • 30 not added (make sure to create an account on OSBLE+ by going to https://plus.osble.org and then Join the course CptS 475/575 Fall 2019)
Course Description

• Data Science is the study of the generalizable extraction of knowledge from data
• Data science requires integrated skill set spanning
 • Computer science
 • Mathematics & Statistics
 • Domain expertise
 + art of problem formulation to engineer effective solutions
• Purpose of this course: introduce basic principles, tools, and general mindset
• Emphasis on breadth rather than depth; and on synthesis of concepts
• Primarily uses the statistical computing language R (will also use/allow Python)
Expectation

• Basic knowledge of algorithms and reasonable programming experience (equivalent to completing CptS 223)
• Familiarity with basic linear algebra
• Basic probability and statistics

• Deficiencies can to a degree be overcome with extra effort
Topics

1. **Introduction: What is Data Science?**
2. **Intro to R (and Python)**
3. **Exploratory Data Analysis and the Data Science Process**
4. **Data Wrangling**
 - Data transformation and manipulation (dplyr); Relational data; Data tidying (tidyr)
5. **Linear Regression**
6. **Classification**
 - Overview, Logistic regression, Linear Discriminate Analysis, k-Nearest Neighbors
 - Decision Trees and Random Forest
7. **Resampling Methods**
 - Cross-validation, The bootstrap
8. **Unsupervised Learning**
 - Principal Component Analysis, K-means clustering, Hierarchical clustering
9. **Data Visualization**
10. **Time Series Data Mining**
 - Distance measures, transformations, algorithms, tools (Matrix Profile, SAX)
11. **Intro to Deep Learning**
12. **Data Science and Ethics**
A few things

• Pre-course survey
 • Your background
 • Level of familiarity with R, Python, MathLab
 • Topics you are excited about
 • Other topics you wish to see covered
 • Complete and submit on OSBLE

• R tutorial

• (Python tutorial)

• Tutorial generally preferred time
Course work and assessment: CptS 475

• Assignments (30%)
 • Total of 5 assignments spread through the semester
 • Completed and submitted individually
 • Each of the assignments carries equal weight

• Semester Project (30%)
 • Team of two or three
 • Option between choosing from a given list OR propose own project
 • Guidelines will be provided

• Exam (30%)
 • Late midterm
 • Designed to cover most material AND complement assignments and semester project

• Class participation (10%)
 • Attendance
 • Active participation
Course work and assessment: CptS 575

• Assignments (25%)
 • Total of 5 spread through the semester
 • Completed and submitted individually
 • Each of the assignments carries equal weight

• Semester Project (30%)
 • Team of two or three
 • Option between choosing from a given list OR propose own project
 • Guidelines will be provided

• Survey Paper (15%)
 • Submitted individually
 • Further explore a specific topic related to the course content
 • Topic to be chosen in consultation with instructor

• Exam (20%)
 • Late midterm
 • Designed to cover most material AND complement assignments and semester project

• Class participation (10%)
 • Attendance
 • Active participation
<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
<th>Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 (Aug 19)</td>
<td>What is Data Science?</td>
<td>Pre-course survey out</td>
</tr>
<tr>
<td>02 (Aug 26)</td>
<td>Intro to R/Python</td>
<td>Survey due, Assignment 1 out</td>
</tr>
<tr>
<td>03 (Sep 02)</td>
<td>Overview of Machine Learning</td>
<td>Assignment 1 due</td>
</tr>
<tr>
<td>04 (Sep 09)</td>
<td>Exploratory Data Analysis</td>
<td>Assignment 2 out</td>
</tr>
<tr>
<td>05 (Sep 16)</td>
<td>Data Wrangling</td>
<td>Assignment 2 due, Assignment 3 out</td>
</tr>
<tr>
<td>06 (Sep 23)</td>
<td>Project Setup; Linear Regression (LR)</td>
<td>Assignment 3 due, Project proposal out</td>
</tr>
<tr>
<td>07 (Sep 30)</td>
<td>LR II; Classification I</td>
<td>Assignment 4 out</td>
</tr>
<tr>
<td>08 (Oct 07)</td>
<td>Classification II</td>
<td>Project proposal due</td>
</tr>
<tr>
<td>09 (Oct 14)</td>
<td>Resampling Methods</td>
<td>Assignment 4 due</td>
</tr>
<tr>
<td>10 (Oct 21)</td>
<td>Unsupervised Learning</td>
<td>Assignment 5 out</td>
</tr>
<tr>
<td>11 (Oct 28)</td>
<td>Data Visualization</td>
<td>Assignment 5 due</td>
</tr>
<tr>
<td>12 (Nov 04)</td>
<td>Time Series Data Mining</td>
<td>Mid-term Exam</td>
</tr>
<tr>
<td>13 (Nov 11)</td>
<td>Deep Learning (DL)</td>
<td>In-class Exercise</td>
</tr>
<tr>
<td>14 (Nov 18)</td>
<td>DL II, Ethics, Wrap-up</td>
<td></td>
</tr>
<tr>
<td>15 (Nov 25)</td>
<td>Thanksgiving break</td>
<td></td>
</tr>
<tr>
<td>16 (Dec 02)</td>
<td>Project presentations</td>
<td>Final project report due on Dec 12</td>
</tr>
</tbody>
</table>
Learning Outcomes

- Describe what Data Science is and the skill sets needed
- Describe the Data Science Process
- Use R to carry out basic statistical modeling and analysis
- Carry out exploratory data analysis (to gain insight)
- Apply basic machine learning algorithms for predictive modeling
- Correctly apply cross-validation to assess model performance
- Apply unsupervised learning methods to discover patterns, trends and anomalies in data
- Use effective data wrangling approaches to manipulate data
- Create effective visualization of data (to communicate or persuade)
- Reason around ethical and private issues in data science and apply ethical practices
- Work effectively in teams on data science projects
- Apply knowledge gained in the course to carry out a project and write technical report
Books

- No required textbook
- Lecture notes (slides) and reading material will be made available on the OSBLE+ page
- References
 - Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani. *An Introduction to Statistical Learning with Applications in R*. Springer, 2013. (Freely available online)
 - Hadley Wickham and Garett Grolemund. *R for Data Science*. 2017. (Freely available online)
Policies

- **Conduct in class**
 - Silence personal electronics
 - Arrive on time and remain throughout the class

- **Correspondence**
 - Happens via OSBLE+

- **Attendance**
 - Required. Make sure absences are cleared with me

- **Missing or late work**
 - Max 48 hrs with 10% penalty per 24 hrs

- **Academic Integrity**
 - Strongly enforced

- Consult syllabus for more details
Welcome again to the course!
I am excited to have you in the class,
and I look forward to your participation and to
a great semester!