Translate a PDA to a CFG.

1. We say that a PDA M is empty-stack acceptance if: when M accepts a word, the stack is empty (the stack bottom symbol Z_0 is popped out). // For this kind of acceptance, we don't care if M is at accepting state at all.

Thm. Every PDA M can be made empty stack-acceptance. That is, for each PDA M, we can construct a PDA M' s.t.
\[L(M) = L(M') \]

\[L \] denotes stack acceptance.

Proof (easy): When \(M \) accepts an input word \(w \) by reaching an accepting state, and then, we need only keep popping out all symbols in the stack. In this way, the \(M \) now is the \(M' \) with empty stack acceptance.

2. Translate a PDA (with empty-stack acceptance) \(M \) into a Cnf. grammar \(G \).
Conceptually, in the grammar G,

$$[p, A, q] \Rightarrow^{*} q \ y_q$$

where y_q is one non-terminal symbol.
How a grammar generates a word:

\[S \rightarrow oS1 \lor S \]

Diagram:
```
          o S 4
          /  \  /
         S   /  \  /
        /   /    /
       S 1  S 1
```
Two kinds of instruction in M:

1. \((q, n) \in \delta(p, a, A) \)
 - At state \(p \), while reading input symbol \(A \) with \(\text{top of stack symbol } A \), \(M \) will switch to state \(q \).
 - Pop the \(A \) out.

We have grammar rule in \(G \):

\[[p, A, q] \rightarrow a \]
$(p_i, r) \in \Delta(p, a, A)$ with $r = B_1 \ldots B_m$ for $m \geq 0$.

δ

γ

β

α

β

γ

$[P_i, B_1, P_2] [G_1, B_2, G_2] \ldots [G_{m-1}, B_m, G_m]$
In G, we have

$[p, a, q] \rightarrow \alpha \theta[p_1, b_1, q_1] \theta[p_2, b_2, q_2] \cdots \theta[p_m, b_m, q_m]$

where $p, b, q, \ldots, q_m \in \mathcal{Q}$.

(3) Initial rule in G:

$s \rightarrow \theta[p_0, z_0, q_1]$

where $q \in \mathcal{Q}$.
Example:

\[\delta(q_0, 1, 0) = \{(q_1, 1)\} \]

\[\Rightarrow [q_0, 0, 0, 1] \rightarrow 1 \]

- this is ONE non-terminal symbol.
Example:

\((q_0, 0, z_0) \in S(q_0, 0, z_0)\)

\([q_0, z_0, *_1] \rightarrow 0 [q_0, 0, *_2] [*_2, z_0, *_1]\)

where \(*_1, *_2 \in \mathbb{Q} \)