Turing Machines, part II

March 25, 2020
In last lecture, we saw...

- Informal description of TM
- Formal definition of TM
- How TM computes
 - Changes in configurations
- Turing recognizable and Turing decidable languages
Formal definition of TM

\[M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}}), \text{ where} \]

1. \(Q \) is the set of states
2. \(\Sigma \) is the input alphabet not containing the \textit{blank symbol} \(\square \)
3. \(\Gamma \) is the tape alphabet, where \(\square \in \Gamma \) and \(\Sigma \subseteq \Gamma \)
4. \(\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{L,R\} \) is the transition function
5. \(q_0 \in Q \) is the start state
6. \(q_{\text{accept}} \in Q \) is the accept state
7. \(q_{\text{reject}} \in Q \) is the reject state, where \(q_{\text{reject}} \neq q_{\text{accept}} \)
Formalization of how TM computes

- The **start configuration** of M on input w is the configuration q_0w
- In an **accepting configuration**, the state of the configuration is q_{accept}
- In a **rejecting configuration**, the state of the configuration is q_{reject}
- Accepting and rejecting configurations are **halting configurations**
- A TM M **accepts** input w if a sequence of configurations C_1, C_2, \ldots, C_k exists, where
 1. C_1 is the start configuration of M on input w,
 2. Each C_i yields C_{i+1}, and
 3. C_k is an accepting configuration
Turing recognizable and Turing decidable languages

- The collection of strings that M accepts is the language of M, or the language recognized by M, denoted by $L(M)$
- A language is called Turing-recognizable if some Turing machine recognizes it
 - Aka Recursively enumerable language
- When we start a TM on an input, three outcomes are possible:
 - accept
 - reject
 - loop (does not halt)
- A TM M can fail to accept an input by entering the q_{reject} state and rejecting, or by looping.
- Sometimes distinguishing a machine that is looping from one that is merely taking a long time is difficult.
- For this reason, we may prefer TMs that halt on all inputs; such machines never loop. These machines are called deciders.
- A language is called Turing-decidable if some language decides it.
 - Aka recursive language
Language of Turing Machines

- Regular (DFA)
- Context-free (PDA)
- Context sensitive
- Turing Recognizable
- Decidable
- Recognizable
Today, we will look at

Examples of Turing Machines

Note:
We will mostly work with only higher-level descriptions, which are essentially a “shorthand” for formal (state diagram-based) descriptions.
Example 1: (is the length a power of two?)

Turing machine M_2 that decides

$$A = \{0^{2^n} \mid n \geq 0\},$$

the language consisting of all strings of 0s whose length is a power of 2.
First a high-level description of M_2

$M_2 = \text{“On input string } w:\text{“}

1. Sweep left to right across the tape, crossing off every other 0.
2. If in stage 1 the tape contained a single 0, accept.
3. If in stage 1 the tape contained more than a single 0 and the number of 0s was odd, reject.
4. Return the head to the left-hand end of the tape.
5. Go to stage 1.”

Each iteration of stage 1 cuts the number of 0s in half.
Formal description of M_2

- $M_2 = (Q, \Sigma, \Gamma, \delta, q_1, q_{accept}, q_{reject})$
 - $Q = \{q_1, \ldots, q_5, q_{accept}, q_{reject}\}$
 - $\Sigma = \{0\}$
 - $\Gamma = \{0, x, \sqcup\}$
 - δ (described with a state diagram in next slide)
 - The start, accept, and reject states are q_1, q_{accept}, and q_{reject}.
This machine begins by writing a blank symbol over the leftmost 0 on the tape so that it can find the left-hand end of the tape in stage 4.
Sample run of M_2 on input 0000

\[
\begin{array}{c|c|c|c}
& q_10000 & q_2000 & q_3000 & q_4000 & q_5000 \\
\toprule
q_1 & wq_5x0xu & q_5 & q_5 & q_5 & q_5 \\
q_2 & q_5x0xu & q_5 & q_5 & q_5 & q_5 \\
q_3 & wq_5x0xu & q_5 & q_5 & q_5 & q_5 \\
q_4 & wq_5x0xu & q_5 & q_5 & q_5 & q_5 \\
q_5 & wq_5x0xu & q_5 & q_5 & q_5 & q_5 \\
\end{array}
\]
Example 2:
(the example from last lecture: is the left the same as the right?)

- Turing Machine M_1 for testing membership in the language

\[B = \{w#w \mid w \in \{0,1\}^*\} \]
Recall the high-level description of M_1

$M_1 =$ “on input string w:

1. Zig Zag across the tape to corresponding positions on either side of $#$ to check whether the inner positions contain the same symbol. If they don’t, or if no $#$ is found, reject. Cross off symbols as they are checked to keep track of which symbols correspond.

2. When all symbols to the left of $#$ have been crossed off, check for any remaining symbols on the right of $#$. If any symbols remain, reject; otherwise accept.”
Formal description of M_1

$M_1 = (Q, \Sigma, \Gamma, \delta, q_1, q_{\text{accept}}, q_{\text{reject}})$

- $Q = \{q_1, \ldots, q_8, q_{\text{accept}}, q_{\text{reject}}\}$
- $\Sigma = \{0, 1, \#\}$, and $\Gamma = \{0, 1, \#, x, \downarrow\}$
- δ (described with a state diagram in next slide)
- The start, accept, and reject states are q_1, q_{accept}, and q_{reject}.
State diagram of M_1
Example 3:
(let us do some arithmetic)

- Turing machine M_3 that decides the language

$$C = \{a^i b^j c^k \mid i \times j = k \text{ and } i, j, k \geq 1\}$$
High-level description of M_3

$M_3 = \text{“On input string } w:\n\begin{align*}
1. &\text{ Scan the input from left to right to determine whether it is a member of } a^+b^+c^+ \text{ and reject if it isn’t.} \\
2. &\text{ Return the head of the left-hand end of the tape.} \\
3. &\text{ Cross off an } a \text{ and scan to the right until a } b \text{ occurs.} \\
&\text{ Shuttle between the } b \text{’s and the } c \text{’s, crossing off one of each until all } b \text{’s are gone. If all } c \text{’s have been crossed off and some } b \text{’s remain, reject.} \\
4. &\text{ Restore the crossed off } b \text{’s and repeat stage 3 if there is another } a \text{ to cross off. If all } a \text{’s have been crossed off, determine whether all } c \text{’s have been crossed off. If yes, accept; otherwise reject.”}
\end{align*}$

$C = \{a^i b^j c^k \mid i \times j = k \text{ and } i, j, k \geq 1\}$
Some notes on M_3

- **Stage 1**
 - Operates much like a FA
 - No writing necessary as head moves from left to right
 - Keeps track by using its states to determine whether the input is in the proper form

- **Stage 2**
 - One subtle issue here is how to find the left-hand end of the input tape
 - One solution is to use a special symbol to mark (e.g. the blank symbol was used in M_2)
 - Another solution is to take advantage of the definition of TM (prevent left move when it is on the “cliff”)

- **Stages 3 and 4**
 - Have straightforward implementation and
 - use several states each
Example 4: (let us solve the \textit{element distinctness problem})

- Given a list of strings over \(\{0,1\} \) separated by \#s, design a Turning machine \(M_4 \) that would accept if all the strings are different. The language is

\[
E = \{ \#x_1\#x_2\#\ldots\#x_l \mid \text{each } x_i \in \{0,1\}^* \text{ and } x_i \neq x_j \text{ for each } i \neq j \}
\]

- Machine \(M_4 \) works by comparing \(x_1 \) with \(x_2 \) through \(x_l \), then by comparing \(x_2 \) with \(x_3 \) through \(x_l \), and so on.
High-level description of M_4

$M_4 = "On input w:"

1. Place a mark on top of the leftmost tape symbol. If that symbol was a blank, accept. If that symbol was a #, continue with the next stage. Otherwise, reject.

2. Scan right to the next # and place a second mark on top of it. If no # is encountered before a blank symbol, only x_1 was present, so accept.

3. By zig-zagging, compare the two strings to the right of the marked #s. If they are equal, reject.

4. Move the rightmost of the two marks to the next # symbol to the right. If no # symbol is encountered before a blank symbol, move the leftmost mark to the next # to its right and the rightmost mark to the # after that. This time, if no # is available for the rightmost mark, all the strings have been compared, so accept.

5. Go to stage 3."
Notes on M_4

- M_4 illustrates the technique of marking tape symbols
 - In stage 2, the machine places a mark above the symbol #
 - In the actual implementation, the machine has two different symbols, # and `#, in its tape alphabet.
 - In general, we may want to place marks over various symbols on the tape. To do so, we merely include versions of all these tape symbols with dots in the tape alphabet.