Welcome to Cpts 317

Mon Feb 10

Topic of the Day
The Pumping Lemma

(aside: return of HW1 papers)
Regular Language

- Finite Automata
 - Formal definition of Computation
 - Designing F.A.
 - Regular Operations

- Non-determinism
 - Equivalence of NFAs & DFAs
 - Closure under regular operation

- Regular expressions
 - Formal definition of reg. expr.
 - Equivalence with F.A.

- Non-regular Language
 - The Pumping Lemma for Regular Language
Pumping Lemma

If A is a regular language, then there is a number p where if s is any string in A of length $|s| \geq p$, then s may be divided into three pieces, $s = xyz$, satisfying the following conditions:

1. for each $i \geq 0$, $xy^iz \in A$
2. $|y| > 0$, and
3. $|xy| \leq p$

p is called the pumping length.

It is typically $=$ number of states in DFA.
Note:

* When 5 is divided into xy2, either x or 2 may be E, but condition 2 says that y ≠ E.

* Condition 3 states that the pieces x and y together have length at most p.
Proof Idea

Let \(M = (Q, \Sigma, \delta, q_0, F) \) be a DFA that recognize \(A \).

We assign the pumping length \(p \) to be the number of states of \(M \).

We want to show that any string \(s \) in \(A \) of length at least \(p \) may be broken into three pieces \(x y z \), satisfying our three conditions.

Case 1: no strings in \(A \) are of length \(\geq p \).

Then, the Lemma is vacuously true; the three conditions hold for all strings of length \(\geq p \) if there aren't any such strings.
Case 2: If $s \in A$ has $|s| \geq p$:

Consider the sequence of states that M goes through when computing with input s.

It starts with the start state q_1, say, then it goes to some state q_5, then say q_{10}, ..., until it reaches q_{accept}.

If we let $n = |s|$, then the sequence $q_1, q_5, ..., q_{\text{accept}}$ has length $n + 1$.

Because n is at least p, we know that $n + 1 \geq p = \text{number of states of } M$.
Therefore, the sequence must contain a repeated state.

This result is an example of the pigeonhole principle — if \(p \) pigeons are placed into fewer than \(p \) holes, some hole has to have more than one pigeon in it.

Illustration (97 is the one that repeats)

\[
S = S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4 \rightarrow S_5 \rightarrow S_6 \rightarrow \cdots \rightarrow S_n
\]

\[
\begin{array}{ccccccc}
9_1 & 9_5 & 9_2 & 9_7 & 9_1 & 9_7 & 9_{25} & \text{accept}
\end{array}
\]

We divide \(S \) into the three pieces \(x, y, \) and \(z \).

- \(x \): part of \(S \) appearing before 97
- \(y \): part between the two appearances of 97
- \(z \): remaining part of \(S \), after second occurrence of 97
Let us see why this division of S satisfies the three conditions.

Suppose we run M on input $xyyz$. x takes M from q_1 to q_f, then the first y takes it from q_f back to q_1, as does the second, and then z takes it to q_{accept}. VOK

Similarly, it will accept $xzyz$ for $n > 0$.

x: take M from q_1 to q_f
y: take M from q_f back to q_1
z: take M from q_1 to q_{accept}
For the case $i = 0$, $xy^i z = xz$, which is accepted for similar reason. This establishes Condition 1.

Condition 2: We see that $1y1 > 0$, as it was the part of S that occurred between two different occurrences of 77.

Condition 3: We ensure that 77 is the first repetition in the sequence. Then by the pigeonhole principle, the first $p + 1$ states in the sequence must contain a repetition. Therefore $|x y l| \leq p$.
Proof

Let \(M = (Q, \Sigma, \delta, q_0, F) \) be a DFA recognizing \(A \) and \(p \) be the number of states of \(M \).

Let \(s = s_1 s_2 \ldots s_n \) be a string in \(A \) of length \(n \), where \(1 \leq p \).

Let \(r_1, \ldots, r_n \) be the sequence of states that \(M \) enters when processing \(s \), so

\[
 r_i = \delta(r_{i-1}, s_i)
\]

for \(1 \leq i \leq n \).

This sequence has length \(n+1 \), which is at least \(p+1 \).
Among the first $p+t$ elements in the sequence, two must be the same state, by the pigeonhole principle.

We can the fact of these r_j and the second r_e.

Because r_e occurs among the first $p+t$ places in the sequence starting at r_1, we have $k = p+1$.

Now we let

\[x = s_1 \ldots s_{j-1} \]
\[y = s_j \ldots s_{e-1} \]
\[z = s_e \ldots s_n \]
As \(x \) takes \(M \) from \(r_i \) to \(r_j \),
\(y \) takes \(M \) from \(r_j \) to \(r_j \),
\(z \) takes \(M \) from \(r_j \) to \(r_{i+1} \),
which is an accept state, \(M \) must accept \(xy^i z \) for \(i \geq 0 \).

We know that \(i \neq k \), so \(|y| \geq 0 \);
and \(k \leq p+1 \), so \(|x y| \leq p \).

Thus we have satisfied all three conditions of the PL.
How to use the PL to prove that a language B is not regular:

(1) Assume that B is regular in order to obtain a contradiction.

(2) Use the PL to guarantee the existence of a pumping length p such that all strings of length p or greater in B can be pumped.

(3) Demonstrate that s cannot be pumped by considering all ways of dividing s into x, y, and z, and for each such division, finding a value i such that x y^i z ∈ B.